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Abstract—For plane strain finite deformation plasticity, several finite-clement methods are examined and
their corresponding computational efficiency and accuracy are compared by means of an exampie of pure
bending. Then, employing onc of the more efficient methods, the state of stress and deformation at the
center of a rectangular bar, deformed in uniaxial extension, is studied. On the basis of this information, then
the growth process of a (micro) void in a unit cell located at the center of the necked bar, is examined,
revealing that the interna! fracture at microscopic scales, seems to occur by the formation of shear bands
inclined at about 45° with the axis of (macroscopic) extension, a fact which has been observed in ductile
fracture of two-phase alloys. Finally, void growth parameters (i.c. those which characterize the geometry of
the void) are complted and the results are compared with those obtained from a solution given by
McClintock, arriving at a reasonably good agreement.

1. INTRODUCTION
It is commonly accepted that void growth at nonmetallic inclusions in two-phase alloys plays a
significant role in the process of ductile fracture, see [1] for a discussion and references. The
corresponding plastic flow in the vicinity of the voids involves very large strains of, and
exceeding 100%. Deformations of this kind are essentially incompressible, and therefore,
numerical methods needed for the analysis must account for this incompressibility [2-5].

In this paper we first present and compare several finite-element methods which have been
developed for the analysis of finite plastic deformations in plane strain. By means of an
example of pure bending we then estimate the corresponding computational efficiency and
accuracy of these methods. Then, employing one of the more efficient methods, we examine the
state of stress and deformation at the center of a rectangular bar (plane strain) deformed in
uniaxial extension. On the basis of this information, we then study the growth process of a void
in a unit cell, revealing that the internal fracture seems to occur by the formation of shear bands
inclined at about 45° with the axis of extension, between two adjacent voids, a fact which has
been observed experimentally in many situations, see, e.g.[6]. Finally, we compute the void
growth parameters (parameters which characterize the geometry of the void) and compare our
results with estimates which we obtain from a solution given by McClintock(7]. The present
paper, therefore, is complementary to our previous works reported in Ref. {5, 8].

2. FORMULATION OF NUMERICAL METHODS

The considered methods are based on two variational principles which have been presented
in {5, 8}, and which are summarized below.

2.1 Variational principles
Consider the functional J; given by

Ji(v)= I [%'s; CubceDesDee — TapDacDes +% Topvcabcp = Pfavl] dv

- J: T,va ds, @)
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where repeated indices are summed, and where
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Here dv and ds are volume and surface elements in the current configuration, f, and T, are the
prescribed rates of body force (per unit mass) and surface traction {per unit current area), py
and p are mass densities in the initial and current configurations, respectively, T,, are the
components of Cauchy's stress, and T, is the corresponding deviator. In (2.2), E, v, and h are,
respectively, Young's Modulus, Poisson’s ratio, and the work-hardening parameter; a =1 for
plastic loading and & = 0 for elastic loading or unloading. The quantity @,,/@t is the Jaumann
rate of the Kirchhoff stress, see Hill[9], Prager[10] and Nemat-Nasser[11].

It is easy to show that the vanishing of the variation of J,, for arbitrary but kinematically
admissible variation in the velocity field, results in the equilibrium equations and traction
boundary conditions for the rate problem, see [8].

Next we consider the following functional, J;, in which independent fields subject to
variations are v, and § = p/E, where p is the pressure-rate:

([eft 9120 )
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the corresponding constitutive relations are now written as
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We take the first variation of J; with v, and ¢ as independent fields, and use (2.4) to obtain

Ja= f [ﬁ %‘;‘b' 8D, — Tapd(D.oDes) +% Taba(vc.avc.b) "fnsva] dv

- f T80, ds + {:;(?ﬁ 5 {Dec - 31— 20)4)84 do. @.5)

The first two integrals on the right-hand side of (2.5) are identical to 8J,, and the last integral
gives the following dilatational constitutive relation:

D.=31-2v)ginv (2.6)
For a strictly incompressibile case (v = 0.5), functional J, can still be used: we set »=0.5 in

(2.6) and arrive at
D..=0. Q7
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Functional J, represents the rate-form, nonlinear version for elasto-plastic materials of a
functional proposed by Herrmann[12) for linear elasticity. Nagtegaal et al.[4] derived a
somewhat similar functional. The authors in [4] assumed a piecewise constant pressure-rate
field, and then eliminated the pressure-rate in order to arrive at a modified strain-displacement
relation. Their procedure requires that the material be compressible. Moreover, their method
becomes identical with the usual displacement method if a piecewise linear displacement field is
used. The numerical formulations based on the J, variational principle, on the other hand,
remain valid for strictly incompressible materials.

2.2 Finite-element formulations

We shall use piecewise linear fields within each element. In our previous report[8], four
different methods have been presented and the corresponding results compared. In the present
work we shall give two additional methods which have certain advantages over the previous
methods. These methods are denoted by A and B. We also consider a modified version of the
method 4 given in (8], and denote it by method 4'. For the sake of completeness we shall first
list below the methods discussed in [8].

Method 1. This is based on the J; functional and triangular elements, and is the same as the
usual displacement method. It is effective for compressible materials.

Method 2. This is based on the J, functional and uses a linear velocity field and a constant
pressure-rate field in each triangle. The final stiffness matrix obtained by this method is not
positive definite, so that the usual solution procedure (e.g. Cholesky decomposition) cannot be
applied. For compressible materials, Method 2 reduces to Method 1, except it is relatively
inefficient and inaccurate.

Method 3. In this method the velocity field as well as the pressure-rate field are taken to be
linear over each triangular element. This results in a banded matrix formulation which is
appealing, but the additional degrees of freedom renders the computational procedure more
expensive.

Method 4. In this method a quadrilateral element with crossed diagonals is used, see Fig. 1.
A linear velocity field is considered in each triangle, but a common constant pressure-rate field
is employed for all four triangles which constitute a given quadrilateral element. The method
applies to both compressible and strictly incompressible materials. It appears to be more
effective than the other three methods. It is convenient to use different solution schemes for the
compressible case and for the strictly incompressible case. The detailed procedure is presented
in [8]. We shall denote the procedure for the strictly incompressible case by Method 4'. In both
Methods 4 and 4', static condensation is used to eliminate the pressure-rate field in each
quadrilateral element.

We shall now consider two additional methods, designated by A and B, which are more
effective than those stated above.

Method A. This is based on the J, functional, and the quadrilateral element shown in Fig. 1.
From &J, = 0 we obtain, for a typical quadrilateral element,

[ 2] (-0} .

where the subscript 1 refers to the outer vertices, and the subscript 2 to the inner vertex of the

Y
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Fig. 1. A special quadrilateral element.
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typical element shown in Fig. 1. We now perform a static condensation on (2.8), to obtain
Kv, =R, 2.9
where matrix K and vector R are given by

K=Ky-KiuKZKh,
R=R, - K KR, 2.10)

After (2.9) is assembled into a global matrix, we solve for v, corresponding to vertices of all the
quadrilateral elements. In order to compute the average strain-rate, IJ,, over the four triangles
which form a typical quadrilateral element, we use the following relation:

5=§{§:},§=%§3‘, @11

where B, i=1,2,3,4, are the matrix coefficients for the corresponding strain-rate, velocity-
relations, pertaining to the constituent triangles. The average stress-rate, 97,,/9, is computed
with the aid of (2.2),, and the nodal forces are obtained from

A ‘ ! 2
R=BT,B=Y L‘ BT dA', 2.12)

in}

where T is the Cauchy stress, and A’ denotes the area of the ith triangle in a typical
quadrilateral element. For the purpose of iteration, the nodal forces corresponding to the inner
point of a quadrilateral element, are condensed with the aid of (2.10),.

Method B. We apply the functional J, to a typical quadrilateral element, denoted by B,
assuming that the pressure-rate, g, is constant, and that the velocity field, o, is linear in each
triangle. With the aid of (2.5) and noting that 84j is arbitrary, we obtain

&
Qs = 21 Di AY{3(1-2v)Ag} (B not summed), 2.13)

where the superscript i refers to the ith triangle in the Bth element, A’ is the initial area of this
triangle, and Ay is the initial area of the Sth element.

We now apply J; to the entire body, enter the value of the pressure-rate for each element
from (2.13), and from 8J; = 0 obtain

Kvg=R (2.14)

for the Bth element; here the five dimensional vector vs denotes collectively the nodal
velocities of the Sth element, and K and R are given by

‘ ‘ o s P +
K=3 { L ‘ [ﬁ; BTC'Bi + MTo'M' - 2M'Tc'M‘] dAg

4
+ 2 Ev(NN'AZYI(1+ v)(1-20)Ag), (2.15
* ‘ x . I3 - 5 . s
R:Z{f .pzNan dAp‘ +J- N:TTa dLa", (2.16}
i=] Ag' L“

in these expressions the matrices NN’ and N' are such that
Dcc = NNivg, 93 = Nivs, (217)

M and M’ are functions of the coordinates of the nodal points in the current configuration for
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the ith triangle in the Bth element, and

i [T 0] ,.=[T'i. T'iz] 218
=[5 n] m=r 7] @18
On the other hand, if we do not eliminate the pressure-rate, gg, we obtain, for the Bth
element, _
5 £1-6)
[k o a)- ) @0
where
‘ ‘. »_ . o4 .
Kn=3 f ; [—;-;7 BTC'Bi + Mo’ - 2M'Ta‘M'] dAy, 2.20)
i=] JAg
_BE S e g JSE(-2)
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with R defined by (2.16). If the material is not strictly incompressible, we can eliminate gs in
(2.19) to obtain .
(Koo + KugKadKTlos = R. Q22

It can easily be verified that
K=K, +K,.KaKT, 2.23)

and, therefore, we arrive at (2.14) which involves fewer degrees of freedom than included in
(2.19), the total number of the degrees of freedom being equal to those in the corresponding
displacement-based finite-element Method A.

We now examine when (2.14) would indeed be identical with the corresponding system of
equations obtained from the displacement-based variational principle. To this end, we replace
Clibce in J3 bY Capce = Evbapel{(1+ vX1—-2v)} and obtain

- 1o Ev  [(DLASY  pivag
=0t 3 S o Sl - (DLPA | (2.24)

Thus J; would be identical with J; if DL = D?.= D3, = D%, i.e. when the dilatational strain-
rate is uniform over all four triangles which form the Sth element. However, since the velocity
field is linear over each triangle, the corresponding strain-rate is constant, in general having a
different value in each triangle.

All the foregoing methods are implemented incrementally using the Newton-Raphson
iteration method; the Newton-Raphson iteration is performed during each increment until
convergence is obtained, and for the first two iterations the stiffness matrix is updated in order
to take into account the rapid change in the slope of the load-deflection curve. This rapid
change occurs when an element experiences elasto-plastic transition. On the other hand, when
the load-deflection curve becomes “flat” in almost every element, the appropriate acceleration
scheme is used to speed up the convergence.

3. NUMERICAL RESULTS
Before presenting numerical results for the problem of the void growth at the center of a
necked bar, we consider the simple example of pure bending of a beam, in order to compare the
accuracy and the corresponding computational efficiency of the various considered methods.

3.1 Pure bending of an elastic-plastic beam
We assume that planc sections perpendicular to the beam’s axis remain plane during the
deformation, and consider a slice of unit thickness subjected to the prescribed displacement,



488 S. NEMAT-NASSER and M. Tava

fcmy
P u’

I

- .
-u
(a) (b) (c) (d)

Fig. 2. Finite-element systems for pure bending.

u*, as shown in Fig. 2. For Methods 4 and 4' we have used the finite-element mesh shown in
Fig. 2(a), for Method 1, the finite-element 2b, and for Methods A and B, the finite-element 2¢
are, respectively, used, where in 2c, the central node is condensed. We increased the curvature
incrementally, using equal increments of 107>, until the moment-curvature curve attains a
constant slope. The material properties of the beam are, E=3x10'Kg/em, o, =
3.5x 10* Kg/cm?, h (work hardening parameter) = 5.0 x 10* Kg/cm?, and » = 0.3. For this choice
of the material properties the pseudo-analytical solution for the constant slope is given by
M K
;;ﬁ;/l—(‘ =(0.0003741, 3.0

4

where M is the bending moment, H is the thickness of the beam, K is the curvature
corresponding to M, and K, is the curvature for which the outer fiber of the beam becomes
plastic for the first time. The numerical solutions for the constant slope, normalized by the
corresponding pseudo-analytical solution, are given in Table 1, together with the computational
time normalized with respect to the time required to implement Method A. This table also
shows the type of finite-element used. The dashed line for the type of elements used for
Methods A and B indicates that the central node has been condensed. It is seen that Methods 4
and 4’ give the vest accuracy for both compressible and incompressible materials, for Methods
A, B, 1 and 4, v =0.49 is used to simulate the incompressible case (it is therefore “almost”
incompressible). On the other hand, Methods A and B yield fairly accurate results with least
computational time.

Table 1. Numerical results for the limit slope in pure bending normalized by the analytical solution (» = 0.3
and v =0.5); together with the corresponding computational time for various methods normalized by

Method A
The prasent methods The previous_methods
Method A Method B Method 1 Method & Method 4'
displacesent Mixed displacement Mixed Mixed
(condensed) 4 = const. q = const, q = const.
q and displ. (q condensed) | (strictly
condensed incompressible)
e |zme DD BN | N | K | K
ratio v element z
0.3 limicing 1.012 1.010 1.035 0.999
slope in
0.5 pure
(0.49 for bending
Nethods A, 1.014 1.013 0.999 0.998
8, 1 and 4)
0.3 computation 1.0 1.063 0.997 1.260
time
0.5 normalized
(0.49 for by Method A
Methods A, 1.0 1.063 1.262 1.437
B,1land &)
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In the sequel we shall consider first, the necking of a smooth bar in extension and calculate
the corresponding field quantities by means of Method 1. We then use these results to study the
process of void growth at the center of such a bar, using Method A.

3.2 Necking of an elasto-plastic bar in plane strain

The necking of a rectangular bar with an initial imperfection at its central portion, is
analyzed numerically by Method 1. The bar consists of an elasto-plastic work-hardening
material, obeying a power-hardening law given by

% if o=o,
€=
Ef’,,—_[ if o=0, (3.2)
y

where o and e are the effective true stress and strain, respectively, and o, is the yield stress.
The material properties of the bar are the same as those used in Subsection 3.1 except for the
work-hardening parameter h which is not constant here, but depends on o and n (=8). The
finite-element mesh and the geometry of the bar are shown in Fig. 3. The problem of necking in
a bar, using finer mesh systems and for a bilinear elasto-plastic material, has been solved
numerically by Osias{13] and McMeeking and Rice[14). Here we compute the distribution of
stresses, strains, and a triaxiality parameter along the center line (the x,-axis in Fig. 3), as well
as the profile of the necked bar. A total displacement of u* = 6 cm is applied incrementally at
one end of a quarter of the tensile specimen. Three stages of the necked profile with the
corresponding boundaries between the elastic (unloaded) and plastic regions are shown in Fig.
4, where the dotted line denotes the initial profile of the bar. The Cauchy stress components
along the line parallel to the central section (the x;-axis) at the center of the quadrilateral
clements are shown in Fig. 5. Note that, since the average value of stress calculated at the
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Fig. 3. One quarter of a bar with initial imperfection subjected to prescribed displacement u*, plane strain.
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Fig. 4. The necked profile of a bar (solid curves) and propagation of the unloading area (bounded by
dash-dot curves).
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Fig. 5. Distribution of the Cauchy stresses along the center line.

center of each quadrilateral element is assigned to each element, Ty, has a finite value in the
vicinity of x./b = 1; note, however, that the horizontal scales for the three stress components in
Fig. 5 are not the same. The black and open marks in Fig. 5 correspond to the before and after
of the onset of unloading, respectively; the same notation is used in Fig. 6. The distribution of
the nominal strains, €,; and €, and the equivalent plastic strain ¢, along the center line is
shown in Figs. 6(a)~(c), from which a rather flat gradient for the strains is observed.
Bridgman’s[15] assumption of a constant ¢, along the center line is approximately verified for
small values of the elongation, Ifl,, as is seen in Fig. 6(a). Recent studies, e.g.t [6 and 7], have
shown that the traxiality parameter B, i.e. the ratio of the mean stress to the flow stress, plays
an important role in the mechanism of void growth in ductile fracture. Therefore we have
plotted 8 and |ez|/€;; at the center of the bar as functions of //l, in Fig. 7. It is observed that the
triaxiality parameter B8 is constant before the onset of unloading (indicated by a vertical line U
in Fig. 7), and increases at a constant rate after unloading sets in. On other hand the quantity
|ex|/€11, decreases continuously as I/l increases. In the sequel we shall use these results in
order to investigate the mechanism of microscopic void growth at the center of a tensile
specimen.

3.3 Void growth at the center of a necked bar

We shall now study the process of the growth of a void at the center of the necked bar
(plane strain). For the calculation we use Method A, and subject a void (10u, radius) in a unit
cell (100x) at its boundary to the history of the deformation defined by the values of €, and ex
at the center of the tensile bar, given in Fig. 7. One quarter of the unit cell is shown in Fig. 8,
together with the corresponding finite-element mesh. The matrix material has the same
properties as those of the tensile bar in the preceding section.

tFor additional references, see [16].



Numerical studies of void growth in a necked bar 491

1.0['
X !
b L
oSt 4
)
b
4 ()23 0 g
\or
2 ] Ut,=107
(J/ARELS
Qs b (&-1.210
[/[°-|.:lb
L
q D) 0 ¢,
101
q
X3
2
Qs r
L
q ()°5 Y
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Fig. 7. Ifﬁl and triaxiality parameter 8 vs I/l

The cell is subjected to uniformly distributed prescribed displacements, u* and v*, cor-
responding to the local strains, €;, and ex, at the center of the necked bar. In Fig. 9 we have
reported the resultant force in the x,-direction, T, acting on the unit cell, and the average mean
stress, T,,, on the x-boundary, as functions of €;,. In Figs. 10 and 11 respectively, we have
shown contour lines of constant effective plastic strain, ¢,, and maximum shear stress (nor-
malized by dividing by o,) at the stage of deformation which corresponds to the macroscopic
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Fig. 8. Finite-element mesh and geometry of a unit cell.
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Fig. 9. The resultant force T'/o,b,, and the average mean stress, T/, as functions of axial nominal strain
€)).

| X2

o

X
Fig. 10. Contours of constant effective plastic strain, ¢,, for macroscopic strain of €;, = 0.4.

strain of €;; = 0.4. The dash-dot lines in these figures mark the initial geometry of the unit cell.
From these figures it is seen that a region of intense plastic flow forms at a 45° angle with the
x;-axis. If the material contains, in addition to large microscopic particles, small precipitates
(less than 0.1x) distributed throughout the matrix, then one would expect that small voids
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Fig. 12. Void growth parameters R and M vs €.

would nucleate at these particles in the region between the 50% strain contours shown in Fig.
10. Thus it is reasonable to conclude that adjacent larger microvoids in this case may be
connected by “void sheets” at a certain stage of straining, marking the incipience of ductile
fracture.

It should be noted, however, that the existence of voids, and the fact that intense shear
deformations occur between adjacent voids, render the macroscopic response of the bar
plastically compressible. Our calculations in Section 3.2 do not include plastic compressibility.
A satisfactory constitutive relation for finite plasticity with compressibility and encompassing a
nonassociative flow-rule, recently has been developed by Nemat-Nasser and Shokooh[17], but
the application of the theory to the problem of the necking of a bar has not yet been made.

Finally, we have reported in Fig. 12 the void growth parameters defined by

R=%(r;+rz),M=(n-!'z}f(fn+fz}, (3‘3)

as functions of €;;, where r; and r; are the radii of the void in the x;-and xs,-directions,
respectively. In this figure the solid curves are obtained from McClintock’s[7] analytical
solutions (see Appendix A), and the corresponding geometrical marks are our numerical results.
It is seen that reasonably good agreement exists between these results. The relevant details for
the application of McClintock’s solutions (which is based on analytical work of Berg{18]) to our
problem, are summarized in Appendix A.
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APPENDIX A

Based on Berg’s analytical solution[20] for the growth of an elliptical hole in e viscous material, MacClintock 7] obtained
for an elasto-plastic material, the following expressions for the void growth parameters (i.e. for the mean radius R and the
eccentricity M):

RY_ V3 {\/3(1-’!)0'11"'022} euten
In(Ru)—m_n)smh 3 - + 7 (Al)
_ou—dn _01 " 0n - Vie . (\/s(l—n) 0'||+Un)}
_an+an+(M 0n+an)exp{ (]_n)smh 3 b p , (A2)
where n is the work-hardening parameter in
o= gge", (A3)

Ry and M, are the initial mean radius and eccentricity, and oy, and a5, and €;; and €, are the principal stresses and
strains, respectively.

In the case of the necked tension bar the ratio between stresses is a function of e. Therefore we modify (A1) and (A2)
into the differential form,

dR__ \/3 . \[j - 0||+0'11}

—l-?__f(_l-_n)d‘smh{_Z (1 n)—;— (A4)
- \/j Un"ﬂ'zz} . {\/3-(]—”)(7”4'022} { \/i! . \/j(l-n)0||+(fzz

dM——(l-n){M_c.1+a., sinh 3 - de Xexp —”_n)smh( > - )} (AS)

In deriving (A4) and (AS), we assume that n and the ratio of stresses remain constant. In order to use the differential forms
(A4) and (AS), we divide ¢ into 8 increments, and during each increment use the constant stress-ratio and n which are
already obtained from the necked tension bar. We follow McClintock in computing a work-hardening parameter a, which is

ofat €)

g (A6)



